

Model Specification for Use of Maturity Method for Estimation of Concrete Strength

April 2023

www.cic.hk

First published, April 2023

FOREWORD

This is the seventh of a series of Reference Materials on Sample Specification/ Sample Clauses issued by the Construction Industry Council (CIC) under the theme of Model Specifications for Use of Innovative Technology. Sample Specification/ Clauses for use of (i) Unmanned Aircraft Systems for Image Capturing and Surveying; (ii) a Mobile Mapping System with Laser Scanner for Surveying; (iii) a Global Navigation Satellite System Services for Tracking of Disposal of Construction and Demolition Materials; (iv) Artificial Intelligence for Site Safety Monitoring; (v) the Safety Incentive Payment Scheme; and for (vi) Procurement of MiC Building Projects¹ were issued.

This reference material presents model specification clauses for use of the maturity method for concrete strength estimation. The maturity method is a way of evaluating the concrete in-situ strength by relating time and temperature measurements to actual strength values. The use of the maturity method will reduce the sole reliance on standard test specimens and laboratory testing for establishing concrete strength, and knowing the concrete strength in real time will allow early striking of formwork/falsework, early stressing of tendons, etc. This will enhance construction productivity, quality assurance and environmental sustainability.

The model specification clauses can be modified or added, where necessary, for the preparation of a particular specification, to suit the requirements of each individual project. Selected clauses (e.g. those clauses shown in italics) can be used as Notes on Maturity Method for inclusion on the plans submitted to the Buildings Department or works departments for approval/agreement.

The original version of the sample specification clauses was prepared by ARUP for the CIC². Refinements are made to the specification clauses contained herein in view of the amendments promulgated by the Buildings Department on 23.2.2022 in respect of the Code of Practice for Structural Use of Concrete 2013 (2020 Edition)³ on use of the maturity method for monitoring early compressive strength of in-situ concrete.

This Reference Material was prepared by Dr Thomas Lam. Mr Thomas Tong has provided very valuable suggestions and comments on this Reference Material in the preparation. There are four products of temperature sensors on the CITF's pre-approved list: Command Center, Converge, LumiCon and SmartRock. Details of the products and specialist service providers are given in Appendix A. Details of the experience sharing session given to the Buildings Department on 18.11.2022 on the use of the maturity method, in particular on the method of determining the maturity functions constants, are given in Appendix B. Messrs Andy Wong (Digital-G) and Antoine Nourisson (Gear-Up Materials Ltd.), Ms Wendy So (Schneider Development Ltd.) and many organizations with knowledge and experience in the use of maturity method, in particular the Development Bureau, Buildings Department, Housing Department and Urban Redevelopment Authority have also provided very useful comments and information in the preparation of this Reference Material. These contributions are gratefully acknowledged.

¹ https://www.cic.hk/eng/main/aboutcic/publications/reference_materials/

² CIC (2021). Practical Guideline on Maturity Method for Estimation of Concrete Strength.

https://www.cic.hk/files/page/51/CIC%20Maturity%20Method%20Practical%20Guideline.pdf

³ BD (2022). Circular Letter dated 23.2.2022 on Amendments to Code of Practice for Structural Use of Concrete 2013 (2020 Edition).

Practitioners are encouraged to comment at any time to the CIC on the contents of this Reference Material, so that improvements can be made to future editions.

Industry Development Construction Industry Council

DISCLAIMER

This publication is prepared for general reference only. The publication may include (and is not limited to): (a) content prepared using information from various sources contributed by third parties, (b) information provided by third parties, and (c) links to third party information on internet websites. Whilst reasonable efforts have been made to ensure the accuracy of the publication, readers should make direct reference to the original sources of information and the legal requirements referred to by the publication or seek appropriate independent advice from professional advisors before taking action. Readers should not treat or rely on this publication as a substitute for professional advice. The publication is subject to change without notice. No statement, representation or warranty (express or implied) is made as to the reliability, completeness, accuracy or fitness for any particular purpose of the publication. The Construction Industry Council shall not have any liability under the law of contract, tort or otherwise howsoever for any loss, expense, damage, or injury which may arise from or be incurred or suffered by any party relating to or in connection with any information in or any omission from the publication.

ENQUIRIES

Enquiries on this publication may be made to the CIC Secretariat:

CIC Headquarters 38/F, COS Centre, 56 Tsun Yip Street Kwun Tong, Kowloon Tel: (852) 2100 9000 Fax: (852) 2100 9090 Email: enquiry@cic.hk Website: www.cic.hk 2023 Construction Industry Council

CONTENTS

Foreword2
Disclaimer
Enquiries
Preface
Abbreviations
1. Model Specification for Use of Maturity Method for Estimation of Concrete Strength
1.010 General Requirements
1.020 Method Statement
1.030 Concrete Performance Assessment and Submission of Records
1.040 Qualification and Experience Requirements10
1.050 Requirements for Concrete Maturity Monitoring System
Appendix A – Details of Concrete Temperature Sensors on the CITF's Pre-approved List and Specialist Service Providers
Appendix B – Details of Experience Sharing Session Given to Buildings Department on Use of Maturity Method

PREFACE

The Construction Industry Council (CIC) is committed to seeking continuous improvement in all aspects of the construction industry in Hong Kong. To achieve this aim, the CIC forms Committees, Task Forces and other forums to review specific areas of work with the intention of producing Alerts, Reference Materials, Guidelines and Codes of Conduct to assist participants in the industry to strive for excellence.

The CIC appreciates that some improvements and practices can be implemented immediately whilst others may take more time for implementation. It is for this reason that four separate categories of publication have been adopted, the purposes of which are as follows:

- Alerts The Alerts are reminders in form of brief leaflets produced quickly to draw the immediate attention of relevant stakeholders to the need to follow some good practices or to implement some preventive measures in relation to the construction industry.
- Reference Materials The Reference Materials provide standards or methodologies generally adopted and regarded by the industry as good practices. The CIC recommends the adoption of the standards or methodologies given in the Reference Materials by industry stakeholders where appropriate.
- Guidelines The Guidelines provide information and guidance on particular topics relevant to the construction industry. The CIC expects all industry stakeholders to adopt the recommendations set out in the Guidelines where applicable.
- Codes of Conduct The Codes of Conduct set out the principles that all relevant industry participants should follow. Under the Construction Industry Council Ordinance (Cap. 587), the CIC is tasked to formulate codes of conduct and enforce such codes. The CIC may take necessary actions to ensure compliance with the codes.

To allow us to further enhance this publication, we encourage you to share your feedback with us after you have read this publication. Please take a moment to fill out the Feedback Form attached to this publication and send it back to us. With our joint efforts, we believe our construction industry will develop further and continue to prosper in the years to come.

ABBREVIATIONS

- AI Artificial Intelligence
- IP Rating Ingress Protection Rating or International Protection Rating
- TMC Temperature Matched Curing

1. <u>MODEL SPECIFICATION FOR USE OF MATURITY METHOD FOR ESTIMATION OF</u> <u>CONCRETE STRENGTH</u>

1.010 General (1) The Contractor shall provide the service of establishing the use of the maturity method for estimation of in-situ concrete strength for the specified concrete structure in the project.

- (2) The Contractor shall provide and implement a concrete maturity monitoring system for the specified concrete structure in the project.
- (3) The concrete maturity monitoring system shall comprise (i) temperature sensors and devices to retrieve and store the necessary temperature data from the in-situ concrete on-site; and (ii) a cloud-based online digital platform for managing the temperature measurements and viewing the maturity data by relevant stakeholders in the project.
- (4) The Contractor shall submit the following to the Architect/Engineer# for approval at least 2 weeks prior to commencement of the laboratory calibration stage of the maturity method used in the project:
 - (a) name of the specialist service provider (if a specialist service provider is engaged) (Notes: A list of the specialist service providers who are on the CITF's Pre-approved List is given in Appendix A);
 - (b) *planned application for the specified concrete structure in the project;*
 - (c) programme of work, covering laboratory calibration, on-site trial and validation, and re-calibration and re-validation;
 - (d) *method statement as mentioned in Clause 1.020;*
 - (e) name of the engineer responsible for the design and implementation, decision making and supervision of the planned application (the Responsible Engineer) and the concrete technologist;
 - (f) names of the supervision personnel assigned by the Responsible Engineer to carry out the supervision of the implementation of the maturity method, together with their duties, and records of their training and competence assessment by the Responsible Engineer.
- (5) The maturity method shall be adopted in accordance with the Practical Guideline on Maturity Method for Estimation of Concrete Strength (CIC, 2021)⁴ and ASTM C1074-19⁵.
- (6) The Contractor shall provide all necessary access and support to the Responsible Engineer and his assigned supervision personnel for them to carry out their duties effectively.
- (7) The Contractor shall give authority to the Responsible Engineer in decision making involving application of the maturity method, including the determination of the quantity and locations of the temperature sensors for each application, who should seek advice/endorsement from the Architect/Engineer# in the setup prior to finalising the plan;
- (8) The Contractor shall bear all the cost for the application, including but not limited to the concrete maturity monitoring system, laboratory testing and

⁴ CIC (2021). Practical Guideline on Maturity Method for Estimation of Concrete Strength.

https://www.cic.hk/files/page/51/CIC%20Maturity%20Method%20Practical%20Guideline.pdf

⁵ ASTM C1074-19 (2019). Standard Practice for Estimating Concrete Strength by the Maturity Method.

		calił insta sens	prations, staff, precaution and protection works for the equipment and allation of temperature sensors on site and replacement of damaged fors, and the associated time implication.
1.020 Method	(1)	The	following shall be included in the method statement:
Statement		(a)	choice of concrete maturity monitoring system;
		(b)	concrete mix design (the concrete mix used in the structure should be same as that used for deriving the strength-maturity relationship);
		(c)	choice of maturity function (e.g. Nurse-Saul method (Temperature- time Factor) or Arrhenius method (Equivalent Age));
		(d)	procedure for laboratory calibration [^] , including data acquisition and curing devices (e.g. water-curing tank or air-curing box);
		(e)	procedure for determining the maturity function constants, and establishing the strength-maturity relationship based on the laboratory calibration results;
		(f)	procedure for on-site trial and validation (e.g. using Temperature Matched Curing (TMC));
		(g)	procedure for re-calibration and re-validation (e.g. using TMC);
		(h)	apparatuses and their calibration; and
		(i)	quality assurance and supervision.
1.030 Concrete Performance	(1)	Th digit to th	ne Contractor/Responsible Engineer shall maintain all records, in a tal database format to be agreed with the Architect/Engineer#, related the application of the maturity method, including the following:
Assessment		(a)	records of the concrete maturity monitoring system used;
Submission of Records		(b)	records of laboratory calibration (including temperature measurements and concrete strength values);
		(c)	results of maturity function constants and strength-maturity relationship obtained;
		(d)	results of on-site trial and validation (including temperature measurements and concrete strength values) and conformity assessment; and
		(e)	results of re-calibration and re-validation (including temperature measurements and concrete strength values) and conformity assessment.
		(Not	tes: The contents of the conformity assessment should follow those

(Notes: The contents of the conformity assessment should follow those given in Appendix A3.1.3 of the Practical Guideline on Maturity Method for Estimation of Concrete Strength.)

(2) The Contractor/Responsible Engineer shall submit the concrete temperature measurement records in digital form together with an assessment of the adequacy of the development of concrete strength with time for the specified grade of concrete to the Architect/Engineer# for approval within three days of obtaining the concrete temperature measurements. The Contractor/Responsible Engineer shall highlight the correction factor used and any anomaly in the concrete strength development observed. (Notes: Reference shall be made to the BD's

Circular Letter dated 23.2.2022 on the correction factor used. Details of the follow-up actions taken to deal with anomaly are given in Appendix A3.2 of the Practical Guideline on Maturity Method for Estimation of Concrete Strength.)

(3) The Responsible Engineer shall submit all records in digital form to the Contractor and the Architect/Engineer# and the Project Client/Employer for the Contract within one month of completion of the planned application.

(1) The Responsible Engineer nominated by the Contractor shall be a Registered Professional Engineer (Structural, Civil or Geotechnical) who shall be supported by a concrete technologist with a degree in civil or structural engineering recognised by the Hong Kong Institution of Engineers. They shall have at least 3 years of post-qualification practical experience in the design of temporary works and quality assurance and quality control of concrete production work.

- (2) The supervision personnel assigned shall have a higher certificate or higher diploma with a minimum total of 5 years of relevant working experience, or a degree holder with a minimum total of 2 years of relevant working experience in the supervision of works involving in-situ construction of concrete structures (i.e. meeting the qualifications and experience requirements of a Technically Competent Person T3 or higher with experience in the supervision of works involving in-situ construction of concrete structures).
- (3) The Contractor/Responsible Engineer shall provide all necessary training to the assigned supervision personnel in carrying out their supervision duties in the implementation of the maturity method, including the proper and robust installation of temperature sensors and prevention of dislocation and damage to the equipment and installed temperature sensors on site.

(1) All the equipment used for the application of the maturity method shall fulfil the requirements stipulated in the Practical Guideline on Maturity Method for Estimation of Concrete Strength.

- (2) Recommended requirements for embedded temperature sensors, nonembedded items and data retrieval and storage system are given below:
 - (a) The embedded temperature sensors shall be:
 - (i) able to produce temperature readings with an accuracy of +/- 0.2 °C at the required interval set;
 - (ii) provided with rechargeable batteries or a battery lasting for at least 3 months or power connected ;
 - (iii) able to withstand the temperature of in-situ concrete and transmit the signal to the cloud and produce no detrimental effect to the concrete structure in the long run; and
 - (iv) water proofed and dust proofed (IP 66^6 or above).

1.040 Qualification and Experience Requirements

1.050 Requirements for Concrete Maturity Monitoring System

⁶ An IP Rating (also known as an Ingress Protection Rating or International Protection Rating) is a way of showing the effectiveness of the electrical enclosure protection from foreign bodies, such as dust, moisture, liquids and accidental contact. An IP rating consists of the letters IP (Ingress Protection) and two digits. The first digit indicates the level of the enclosure protection from solid foreign bodies, such as dust, tools or fingers, and the second digit indicates the level of

- (b) The non-embedded items (e.g. receivers, hubs, repeaters) shall be:
 - (i) built with a battery lasting for at least 2 years;
 - (ii) water proofed and dust proofed (IP66 or above);
 - (iii) able to withstand the outdoor site harsh environment;
 - (iv) built without sharp corners; and
 - (v) light-weight and with QR-code for registration / identification of locations.
- (c) The data retrieval and storage system shall be:
 - (i) able to temporarily store the data for up to 5 days when data connectivity is unavailable (e.g. due to power cut-off at night), and automatically upload the data to the system when connectivity is resumed without any loss and discontinuity of data; and
 - (ii) able to provide online access of 24/7 data via mobile devices/computers under permission without going to the construction site.
- *Notes:* # The term "Architect/Engineer" may be changed to "Supervising Officer", "Contract Manager", "Appointing Party", etc., as appropriate.
 - ^ The tests shall be carried out by HOKLAS laboratories.

the enclosure protection from moisture (i.e. sprays, drips, submersion, etc.). IP66 indicates that the device is dust-tight and protected from powerful water jets.

<u>APPENDIX A – DETAILS OF CONCRETE TEMPERATURE SENSORS ON THE CITF'S PRE-</u> <u>APPROVED LIST AND SPECIALIST SERVICE PROVIDERS</u>

Gear-Up Materials Limited (Antoine Nourisson: anourisson@gearupmaterials.com)

<u>APPENDIX B – DETAILS OF EXPERIENCE SHARING SESSION GIVEN TO BUILDINGS</u> <u>DEPARTMENT ON USE OF MATURITY METHOD</u>

Use of Maturity Method for Concrete Strength Estimation

Thomas Tong, Thomas Lam & Leo Li, CIC Andy Wong, Digital-G, Gammon 18 November 2022

Buildings Department Experience Sharing Session

12.11.2022 Version

• 5	site tria	als to tes	t the maturit	y method were carried o	ut.				o sa sa	8 8	¥1
* A	Practic	al Guide	line on Matu	rity Method for Estimatio	on of Concret	e St	tre	ngt	h (0	CIC.	1
	021				12 121 11 11 11				a a	1 1	
	.021) WG	as issued	/• · · · · ·								2
. (/	https://w	ww.cic.hk,	/files/page/51/0	CIC%20Maturity%20Method%	20Practical%20	Gui	del	ine.ŗ	odf).	5 B	21
	Site trial	Pour Date	Site Location	Objective – Evaluating early release of	Overseeing Loca		×	·	5 T4	9 ¥3	×
a ll'a	1	23.04.2021	Central Kowloon	Soffits to slabs, beams	HyD	×.				e K	8
8 B1	181 B B		Route – Kai Tak West	Props to slabs, beams					e a	8 18	5
8 6	2	05.05.2021	Shek Wu Hui – UV	Soffits to slabs, beams	DSD	đ.	*	1	1		*
a 19.	- 12 - 12 - <u>2</u>		System No. 1	Props to slabs, beams	5 52 F 1 1		52	1	S 54	31 - 25	2
+	. 3	15.09.2021	Central Kowloon Route – Kai Tak	Soffits to slabs, beams Props to slabs, beams	НуD. +	*	2	.+		8	
a a			West	Live validation using TMC	N 1911 51 51 55					5 55	<i>.</i>
ः ः	- 4 m - M	05.10.2021	Kai Tak Station	Soffits to slabs, beams	ArchSD		2	15	8 13	1	83
8 8	2 2 3	22.42.2024	Square	Props to slabs, beams	CEDD		1			6	1
a 16.		23.12.2021	Retaining Wall	vertical (non- and profiled) formwork	CEDD		8	82			2
							di i	. . .		<u> </u>	

	<u>.</u>	omposition of	Cement			
Ingredients	Chemical Name	Source %				
Lime	CaO	Limestone 67%			10 - mini	-
Silica	SiO ₂	Sandstone 22%			2000	-
Alumina	Al ₂ O ₃	Shale 5%	2 and			-
Iron oxide	Fe ₂ O ₃	Iron 3%				
Calcium Sulfate	CaSO ₄ .2H ₂ O	Gypsum 0.2%			<u>s</u>	
Others		3%	aller of	1 Partie States	3	
= Fe-ox Silico Limeston	ne = CaO					
HAH	200	D 1. Limestone, shale, silica, and iron oxides are quarried from the oregund (Some limestones	Ordinary Portla	and Cement (OPC)	· · · · ·	
	200	1. Limestone, shale, silica, and iron oxides are quarried from the ground. (Some limestones already contain enough silica).	Ordinary Portla Chemical Prop	and Cement (OPC) erties	· · · · ·	%
	C 00	 Quarry 1. Limestone, shale, silica, and iron oxides are quarried from the ground. (Some limestones already contain enough silica). 2. Rock materials are run through a crusher that turns rock into 	Ordinary Portla Chemical Prop alite	and Cement (OPC) erties Ca ₃ SiO ₃	+ C3S	% 50-70
	Stary Killy	 Limestone, shale, silica, and iron oxides are quarried from the ground. (Some limestones already contain enough silica). Rock materials are run through a crusher that turns rock into smaller pieces. Crushed limestone + silica + shale 	Ordinary Portla Chemical Prop alite belite	and Cement (OPC) erties Ca_3SiO_3 Ca_2SiO_4	C3S C2S	% 50-70 15-30
	Coo	 Limestone, shale, silica, and iron oxides are quarried from the ground. (Some limestones already contain enough silica). Rock materials are run through a crusher that turns rock into smaller pieces. Crushed limestone + silica + shale + iron oxides are mixed together and run through a rotary kilh. 	Ordinary Portla Chemical Prop alite belite aluminate	and Cement (OPC) erties Ca ₃ SiO ₃ Ca ₂ SiO ₄ Ca ₃ Al ₂ O ₆	C3S C2S C3A	% 50-70 15-30 5-10%
	Many Killin	 Quarry 1. Limestone, shale, silica, and iron oxides are quarried from the ground. (Some limestones already contrain enough silica). 2. Rock materials are run through a crusher that turns rock into smaller pieces. 3. Crushed limestone + silica + shale + iron oxides are mixed together and run through a rotary kiln. 4. Rotary kiln continuously mixes ingredients and 'calcines'' limestones that CO. is driven 	Ordinary Portla Chemical Prop alite belite aluminate ferrite	and Cement (OPC) erties Ca ₃ SiO ₃ Ca ₂ SiO ₄ Ca ₃ Al ₂ O ₆ Ca ₄ Al ₂ Fe ₂ O ₁₀	C3S C2S C3A C4AF	% 50-70 15-30 5-10% 5-15%
3 Re Hear	Tany Kilm Pol	 1. Limestone, shale, silica, and iron oxides are quarried from the ground. (Some limestones already contain enough silica). 2. Rock materials are run through a crusher that turns rock into smaller pieces. 3. Crushed limestone + silica + shale + iron oxides are mixed together and run through a rotary kiln. 4. Rotary kiln continuously mixes imgredients and "calcines" limestone so that CO, is driven off, forming clinker. 5. Clinker is ground to fine powder and mixed with gypsum (helps 	Ordinary Portla Chemical Prop alite belite aluminate ferrite	and Cement (OPC) erties Ca ₃ SiO ₃ Ca ₂ SiO ₄ Ca ₃ Al ₂ O ₆ Ca ₄ Al ₂ Fe ₂ O ₁₀	C3S C2S C3A C4AF	% 50-70 15-30 5-10% 5-15%

Hydration (Setting) Process of Concrete Stage 1: Initial mixing reaction -> C3A reacts with H₂O to form ettringite (calcium aluminum sulphate) releasing energy. Stage 2: Dormancy-> coated cement particles formed slowing down reaction (hydration) (Note: This phase is used for transporting and pouring the concrete, as the concrete stays on a fluid level. This phase ends with an initial setting of concrete). Stage 3: Strength acceleration->C3S and C2S reaction begins producing heat and creating calcium silicate hydrate (CSH), a gel like product. Stage 4: Speed reduction->maximum temperature reached-> availability of free particles reduced (Note: This phase often energy. Stage 3 Stage 1 Stage 5 Stage 2 Stage 4 • C3S C3A C2S . Final setting time 1 nitial setting time availability of free particles reduced (Note: This phase often ends with the desired strength and the formwork can now be removed). Time Stage 5: Steady development->hydration process slows down. 3

		• • •	. A			
Benefits of Using Maturity Method						
The method is simple and highly adaptable for different projects and the benefits are:	nee	eds. So	ome	e of	 	+
 strength estimation and development in real-time 			122 745	12	е с с с	8 8 2 9
better project planning	2		1.00	20 20	6 0 9 1	2 10 2 12
• automatic documentation + + +	× 3 × 3	+		e R	я — 3 я — 2	+ .
Limitations				11	а с 	e
A maturity calibration is required for every concrete	* * *			18 25		
 Limited concrete moisture affects strength development 	×	+		8	× 5	+
High temperatures can affect long term strength estimations				51 12	а в 11 г	
 Inaccurate parameters can affect the strength estimations 				1		÷
 Incorrect use or wrong procedures may affect strength estimations 		· · ·				
			/	-		5

Maturity Method Steps

Step 1. Select an appropriate maturity function

"A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementitious mixture. The key feature of a maturity function is the representation of how temperature affects the rate of strength development." (ASTM C1074)

The two functions commonly used are:

1. <u>Temperature-time Factor (or Nurse-Saul) (assuming the rate of strength</u> <u>development is a linear function of temperature)</u>

N	1(t	:) =	Σ	(T_a -	$T_o)$	∆t	÷.	М	(t) =	= te	mpe	ratu	ure	-tin	ne f	acto	or a	t a	ge t	: (°(C-h	rs d	or °	°C-(day	s)	· +	8		*1	
	8	*	3					20	Та	= a	iver	age	con	cre	te t	em	pera	atu	re	dur	ing	tin	ne	inte	erv	al L	∆t ('	°C)	2		5	
	20	3		15	5				То		lati	ım te	mr	hera	atiu	re (i	the 1	ten	nne	rat	ure	he		۸/ ۸۸	vhi	ch	stre	ngt	h		11	20
		1	1						10	8	lace	dev	elo	pm	ent	t ce	ases	s) (°	°Č)	(us	ual	ly t	ake	en a	as	-10	to	-12	°C)		1	1
		2							Δt	:= a	tim	ie int	erv	al (hrs	or	days	s)	8	14					21	*	8	82				23
	1		100	18	24	4		80	9			14	9		81	8	8		18	14		ь.".			(#)			- 22		1412	82	¥.,
																							÷.									
				10				<u>.</u>							20				12	2.8	0.5											

		\sim
	2. Equivalent Age (or Arrhenius) (assuming the rate of strength development is an	
	exponential function of temperature)	
*		8
	$t_{a} = \Sigma \left[e^{-Q(\overline{Ta} - \overline{Ts})} \right] \Delta t$ $te = equivalent age at a specified temperature Ts (hrs or days)$	3
8	Q = activation energy (Ea) divided by gas constant (R) (=Ea/R) (K)	8 19
	R = gas constant = 8.314 J/mol-K	
8	Ta = average temperature of concrete during time interval Δt (K)	8
	<i>Ts</i> = specified temperature (K)	
8	Δt = time interval (hrs or days)	12
ň	K= °C+273	
	Notes: Ea is the minimum energy that a molecule needs before it can take part in the chemical	
2	reaction. It depends on several factors like: cement composition cement fineness mineral	
	admixtures water/cement ratio degree of hydration etc	3
*	aumixtures, water/cement ratio, degree of hydration, etc.	10
	ASTM C1074 recommands a Favalue of 40,000 to 45,000 l/mal for Type Learnest without	ł.
	ASTIVIC1074 recommends a Ed Value of 40,000 to 45,000 J/mor for type i cement without	1
	admixtures or additions. This gives a Q value of 5000 K. This value varies between concrete	-
8	mix and depends on the curing temperature. This value can be determined experimentally	4
*	following the procedure given in ASTM C1074, if a more accurate value is needed.	
8		8

- Temperature sensors (2 types: wired or wireless)
- Data acquisition devices (data loggers or transmitters)
- Equipment for making and curing concrete specimens
- (temperature control water-curing tank or air-curing box)
- Compression testing machine

Water-curing tank

Lumicon

Giatec SmartRock2*

SmartRock

9

	What	are th	ne I	m	at	uri	ity	fu	nct	tio	n c	con	nsta	ant	s al	nd	ho	w t	o c	let	ern	nin	e f	the	em	? (<mark>1 (</mark>	of	<mark>3)</mark>	-			
	The m detern curing	aturity nined tempo	y fi usi era	un in atı	ict g t ure	ior he	n c e re (se	on esu e S	sta Ilts Slid	nts of les	s a th 2(re ne o D a	To con nd	for npr 21	M(M) M):	(t), sior	an n te	d C ests	fo or	r te 1 cc	e. onc	Th ret	e (ce (cor cuł	nst pes	ant s ci	ts (ure	cai ed	n b at	e 3	* * *		
	1. Hyp where 2. Expo	s= t= Su= to= k=	c e	equ av tes lim ag rat	ua era st a nitii e w te c	tio ge ng s /he cons	on cuk (hr stre n s ⁻ stai	S or or or of engt tren nt (H	= day) h (N gth nr-1 S =	$\frac{S_u}{1+}$ ores WPa dev or (= S	$k \cdot (t)$ $k \cdot (t)$	$\frac{t-t}{t-t}$ e st opm (-1) e -($\frac{to)}{to)}$ rengenent $(\frac{\tau}{t})^{\alpha}$	(/ gth a : is a	ASTI at ag issur (Fr	M C ge t med reie	C10 (MF I to slel	74) Pa) begii ben	n (h Har	r or nser	day າ &) Peo	der	sen	1, 19	985	5)	+					+
Ç	where	S= t= S _u = τ= α=	• • •	a te li c sl	ver est mit har hap	age age ing act pe p	e cu e (h g sti ceri: para	ibe r or reng stice ame	com day gth (s tim eter	npre y) (MP ne c (tak	essi Pa) cons ken	ve s stan as :	strer nt (h 1)	ngth r or	i at a day	age 1	t (№	IPa) +										+ /	• • • • • • • • • • • • • • • • • • • •			1	1

temperature of the curing tank/box.

Maturity Method Steps

16

17

Step 6. Re-calibrate and re-validate

The maturity-strength relationship should be reviewed at specific assessment period (typically at least monthly) or when there are changes in the concrete production conditions, such as variations in materials, batching equipment, etc.

Initial Production

- Prepare 12 concrete cube specimens and subject them to TMC.
- Embed temperature sensors in 1 concrete cube specimen and begin logging of temperature.
- Perform compression tests at 6 hrs, 12 hrs, 1 day, 2 days, 4 days & 7 days.
- Use S_{TMC} to validate the maturity model.

Continuous Production

- Prepare 6 concrete cube specimens to be subject to TMC.
- Embed temperature sensors in 2 concrete cube specimens and begin logging of temperature.
- Perform compression tests at 12 hrs, 1 day & 3 days.
- Use S_{TMC} to validate the maturity model.

		·									_		а				ь х	÷
What are the acceptance criteria (using n	nat	ur	ity	at a	<u>all t</u>	<u>est</u>	ag	es	up	<u>) to</u>	<u> </u>	da	iys)	<u>?</u>				2
Initial Production			1			3	1			*								×
1111111111000000000000000000000000000		ĸ	8	, + .		22		+	85		×	36	.+		0	×	,+	3
$(S_{TMC} - S_{maturity method}) \le \pm 20\%$			ः २		fo	e at a			- \	2	8	2		e	1	8	2	22
• IT S maturity method > S TMC, determine	CO	rre	eci	.10r	119	CLC	Jr	(C	-)	1		8				1	*	
• CF = $S_{maturity method}/S_{TMC}$		-	× x							* 8			а 18 . 1					
• Min. CF applied = 1.10		10		. + .		-		+	8	20		9	.+		. Ř	8	. +	; 35
• S* maturity method = S maturity method/CF			2	× 2		17		2	2	2		2	8	e	1	2	<i>*</i> :	20
Continuous Production			•	1 1 1 1	-				11 22	2 2	•	•	а 1				*	1
• (S [*] maturity method - S TMC) ≤ 2 MPa		10	2	+		25		.+	8		×	14	· +-		2	×	+	
• $(S_{TMO} - S^* + H_{TMO}) > 2 MPa$	5.93	<u>80</u>	8			18		6			×	2	8				×	3
(OTMC Of maturity method) > 2 mil G		1	-					1			÷.	2					-	e R
		25	5	1	8	14		25		21		3	82 8			2	ų.	
· · · · · · · · · · · · · · · · · · ·		11	2	+	18	24		.+	8	91	×.		×		8	20	· +	-
\land Note: S $= S_{\rm res}$ or S.		80	×		2	2		6	83	*	٠	2	3 B				/	4
		10	-			27 23		1		2		2		1	1			2
		5							2	10 11	2	11.2	//		8 13		18	3

	/				
H	<mark>ow to establ</mark> is	h the m	aturity	functio	n (using te in this case)? (1 of 2)
/.			10 10 10	.T. ~	$\begin{bmatrix} \alpha \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \end{bmatrix}$
•	Use exponentia	al equation	on $S = S$	$S_u e^{-(\frac{t}{t})^u}$	to determine Q for te. $t_{\rho} = \Sigma \left[e^{-Q(T_a - T_s)} \right] \Delta t$
•	Assume initial	values of	τ and Su	I. and an	α value of 1 to compute S.
a a °a	Determine T a	nd Su by	, minimi	ising the	sum of the square of errors (SSE) of the actual and
a a a			, The H	sing the	sum of the square of errors (SSE) of the actual and
	computed S v	alues to	r the ti	nree cur	ing temperatures (using the solver function in the
u a 3	Microsoft Exce)	2 2 2	x x (r	
a 5 • a	Plot In τ vs 1/T	$(1/K)$ to α	determiı	ne Q (=16	505 К).
а а ^т а	· · · · · · ·	8 8 80	с ^т х т х	x x x	Ган как «Танан «Танан «Танака» «Та
	Curing temperature	Su 👘	τ	α	2
a a 6	i na 2 g a a	5 5 52			
a a <u>a</u>		8 a 191			3.3 = = 3.2
× × *	25°C	46.27	28.83	1	= <u>1</u> 3.1 = +
	40°C	57.26	22.85	1	
	40 C	57.20	22.05	1	2.9
a a	55°C	51.42	17.60	1	2.8
a (4					0.00300 0.00305 0.00310 0.00315 0.00320 0.00325 0.00330 0.00335 0.00340 1/T (1/K)
+L	^T .	N 19 1941	. T		+
-					21

	Since S _t	e > S TMC	, determin	e correct	ion factor	(CF)	1	CF	=	$\frac{S}{S_{\tau}}$	te MC		×	*	*	+				3	+
•	Correcti	on facto	r (CF) = 1.0	05; use m	in. 1.1.							•		~							
(hr)	S _{TMC} (MPa)	S _{te} (MPa)	(S _{TMC} - S _{te}) (MPa)	% Range	Correcion Factor (CF)	S _{corrected} (MPa)		50.00 45.00 ^S 40.00	tage 3	1	Stage	4 5	Stage 5								
12	8.93	8.19	0.74	9%	0.92	7.45		35.00	1			_		-	-	-Lo	ation C]			
24	20.73	17.51	3.22	18%	0.84	15.92	(C)	30.00	J		4			-							
48	28.27	27.31	0.96	4%	0.97	24.83	duu	25.00			60		~	~	~	~ ^	~	~	~	~	
96	34.66	34.51	0.15	0%	1.00	31.37	Te	15.00				Ŷ		4	}	~	~~~				1
.68	37.01	38.91	-1.9	-5%	1.05	35.37		10.00	-		8	0.5		1	68 (7 d	ays)					
			Max CF		1.05			5.00						-							
			Llse min		1 10			0.00						1000					-	200	_

is applied. The time of removal would become 80.5 hrs (3.35 days), when a CF of 1.1 is

applied, as compared with the 7 day requirement as specified in the CoP for Structural Use of Concrete 2013 (BD, 2020).

					2. 3.				е 1		<u>D</u>	isc	cus	SS	ior	<u>15</u>			4	24 18	t. K	•	•	н. 1							
2	1.	<u>C</u>	orr	ecti	on l	Fact	tor	.*			с в с в			_	2												8				
	a.	BI Ai St	D Ci mei ruc	rcul ndm tura	ar L ent I Us	ette s to se of	r da Coo f Co	ated de o ncre	l 23 f Pr ete	.2.2 acti 201	022 ce 1 3 (2	2 on for 2020	0		Ty	pe o	<mark>f co</mark>	ncre	ete 1	nix		≥ aft	48 I er co cast	iou onci ting	rs rete (> 4 after C	8 ho ⁻ con astii	ours Icreto 1g	e	
ж Ж		Ec	litio	on).			к 14 к 14		. +				4		Conc ofa o	crete or gg	mi bs	x co	onta	inin	g		0	.7				0.8			
	b.	CI fa	C (2 cto	2021 r of) - / 1.1	A mi sho	inim uld	num be a	coi app	rrec lied	tior to	า the	•		Othe	r co	ncre	te m	nix				0	.8				<mark>0.8</mark>			•
		ea >	arly S _{TN}	age _{4C})(stre i.e.	engt c <mark>orr</mark>	h e: <mark>ecti</mark>	stim ion i	nate <mark>fact</mark>	a (wi <mark>or≈</mark>	hen <mark>0.9</mark>]	S _{te}).		T: co	able oncr	11. ete o	2 – :om	Cor pres	rect sive	tion e str	fac eng	tor th	app	lied	l to	the	esti	mate	ed in	situ	
		2						•	10 I I I I			8	•	1 cas str	Due t sting, iking	o the the m formv	rapid laturi vork	rate (ty met and fa	of co thod : alsew	ncrete is not ork o	e stre suita f less	ength able f s than	devel or use 24 he	opm e in j ours.	ent w ustify	ithin ing m	24 ho ninimu	urs af un pe	ter cor riods b	icrete efore	
*		÷,	ан) 19	e e	Ì	-	a a a a	*	.+	к) к		а ж	. +	2	*	*: *:	× 1	+	э э	34 34	141) 1941	+	н 1	*	× ×	- 34 - 34	+	(#1) (#1)	е н е н		+
	Ş			n n 8 8	80 2040	•		•	8 - 41	н К		a R		10 10		*1 1		1										/		•	27
1	4			2 V	1	4	2 N			¥ 1	1 V		14	4		\$S)	ç1 - 1	2 12	12	4			1	91	9 B	1.			2		<u></u>

ommandCenter (Q=1605K)

CommandCenter (Q=5000K)

TMC

Discussions

4. <u>APP-167: Quality of In-situ Reinforced</u>
Concrete Works at an Early Age
As an alternative to RHT, the quality of in-situ

concrete at early age may be assessed by the maturity method on the 7th day after they are cast.

Requirements on RHT

5. Structural concrete elements that require the carrying out of RHT between the seventh and tenth day after they are cast, and the corresponding testing frequency are given in the table below:

	Structural Concrete Element subject to RHT [@]								Minimum Testing Frequency				
1.	. Vertical elements [#] of higher concrete grade than the immediate supports at the base provided by pile cap/footing/raft foundation/transfer plate/transfer beam												
2.	Vertica adjoin	al ele ing be	emen eams/	ts o slabs	of hig s at the	her top	con	cret	e g	rade	than	L	10%
3.	Transf	er bea	ums										50%
4.	Beams beams	s of /slabs	higł on tl	ner ne sa	concre me flo	ete or	grade	e tl	han	adjo	oining	5	10%
	ni ni	2		8			-	22	2	×		a a	././.
i.	6 - 6		÷.	3	4		ŝ	ŝ.	*	2		. /	/

Feedback Form

Model Specification for Use of Maturity Method for Estimation of Concrete Strength (April 2023)

Thank you for reading this publication. To help us improve our future versions, we would appreciate your suggestions/feedback on the publication.

(Please put a " ✓ " in the appropriate box)

1. As a whole,	I feel that this publication is:	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	
	Informative						
	Comprehensive						
	Useful						
	Practical						
2. Does this p	ublication give you useful information	Yes		No	No Comment		
method for	estimation of concrete strength?						
3. Have you n	nade reference to this publication in	Quite Often		Sometimes	Never		
your work?							
4. To what ext	ent have you applied the specification	Most		Some	Some None		
clauses illa							
5. Overall, how	w would you rate this publication?	Excellent	Very Good	Satisfactory	Fair	Poor	
6. Other comments and suggestions (please specify and use separate sheets if necessary).							
Personal Particulars (optional):*							
Name:	<u>Mr. / Mrs./ Ms./ Dr./ Prof./ Ir / Sr ^</u>						
Company:							
Tel:							
Address:							
E-mail:							

* The personal data collected will be used only for this survey. Your data will be kept confidential and dealt with only by the Construction Industry Council.

^ Circle the appropriate option.

Please send this feedback form to: Industrial Development; Email: enquiry@cic.hk; Address: 38/F, COS Building, 56 Tsun Yip Street, Kwun Tong, Kowloon; Fax no.: (852) 2100 9090.

Enquiries

Enquiries on this Reference Material may be made to the CIC Secretariat:

CIC Headquarters 38/F, COS Centre, 56 Tsun Yip Street, Kwun Tong, Kowloon.

Tel	: (852) 2100 9000
Fax	: (852) 2100 9090
Email	: enquiry@cic.hk
Website	: www.cic.hk

2023 Construction Industry Council