

SUPERCRITICAL VORTEX INTAKES FOR URBAN STORMWATER MANAGEMENT

15 December 2017

Lead Applicant

Prof. Joseph H. W. Lee The Hong Kong University of Science and Technology

Co-Applicant Ir. Anthony TSANG Drainage Services Department

Co-Applicants Ir. Andy KWOK Black & Veatch Hong Kong Limited

Ir. John ACKERS Black & Veatch Limited (UK)

HISTORICAL FLOODING EVENTS

ENGINEERING CHALLENGES

Hong Kong West Drainage Tunnel

- Steep hillslope watercourses
- Supercritical flow with velocities in the order of 10 m/s
- Adjacent to densely-populated residential area
- Land constraints
- Minimize public disruption
- Traffic & environmental impact

Characteristic	Maximum	Minimum
Design discharge (m ³ /s)	18.3	0.5
Channel slope (%)	77	1.5
Channel width (m)	7.0	0.7
Dropshaft height (m)	178	5

Steep hillslope watercourses

Adjacent to densely-populated residential area

STORMWATER FLOW AT INTAKES

INNOVATIVE SOLUTION: INTEGRATED BOTTOM RACK – VORTEX INTAKE SYSTEM

Bottom Rack Intake

Bottom Rack Chamber

Vortex Intake

(a) Warped invert spiral intake

(b) Flat invert spiral intake

(c) Tangential vortex intake

PERFORMANCE CRITERIA

Standing Wave Height

INTEGRATED BOTTOM RACK – VORTEX INTAKE SYSTEM PHYSICAL MODELLING

Final design of bottom rack and spiral vortex inlet with warped invert:

- Min. shock wave
- Max. air core area

Bottom rack intake for supercritical flow diversion (final design); observed flow at Q = 53.9 L/s.

Spiral vortex intake with warp invert for supercritical flow diversion

CFD SIMULATION

STABILITY OF SPIRAL VORTEX FLOW

Unstable Flow

Stable Flow

SUMMARY OF ACHIEVEMENT

- Unique integrated bottom-rack and spiral vortex intake design for supercritical flow diversion (Lee *et al* 2005);
- First use of the spiral vortex intake with warped invert in storm water management (Lee et al 2006);
- A new theory for design of tangential vortex intakes was developed (Yu and Lee 2009) and being adopted by the industry:
 - Design of the Thames Tideway Tunnel in London;
 - London Mogden Sewage Works;
 - Toronto Don River and Central Water Front; and
 - Singapore Deep Tunnel Sewer System.
- Proven post-operation performance of the HKWDT; and

• Significant long-term collaboration between academia, industry and Government.

PUBLIC ENGAGEMENT AND EDUCATION OUTREACH

Tunnel Breakthrough Ceremony in 2011

Commissioning Ceremony in 2012

Visit of Financial Secretary of Hong Kong in Aug 2017

PUBLIC ENGAGEMENT AND EDUCATION OUTREACH

Programme

Overseas Site Visits (e.g. MIT)

THANK YOU