

Contents

- 1. Experience Sharing of Concrete PPVC in Singapore
- 2. Experience Sharing of DfMA solution in Hong Kong
- 3. Challenges facing in Hong Kong and our Vision

History of PPVC in Singapore

- Singapore Government through Building and Construction Authority (BCA) started PPVC initiative 7 years ago in 2014
- PPVC development was started as low rise building, such as student hostel, low rise building and 10-storey hotel

Executive Condominium at Canberra Drive (Photo credit: CDL)

Dragages Singapore PPVC Experience

Crowne Plaza Hotel Extension

Steel PPVC System
10 storey hotel, 252 PPVC modules

Woodlands Nursing Home

Hybrid PPVC System 9 storey nursing home, 343 PPVC modules

Clement Canopy

Concrete PPVC System 40 storey residential (505 units), 1866 PPVC modules

Park Colonial, Woodleigh

Concrete PPVC System
6 blocks, 14-15-16 storey apartments
(837 units),
2514 PPVC modules

Garden Residences, Serangoon

Concrete PPVC System
5 blocks, 15 storey apartments
(613 units),
2012 PPVC modules

Perumal Road

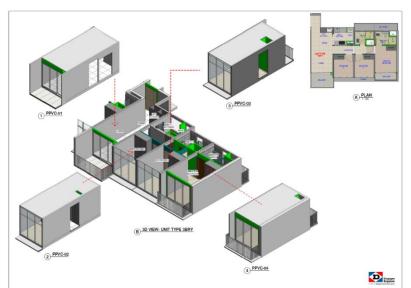
1 tower 23 storey residential (116 units)
1 tower 18 storey service apartment (240 units)
680 PPVC modules

Clement Canopy

- Tallest Concrete MiC in the world
- 46,000m2 GFA in a 40-storey building
- Client: UOL Venture Development (Clementi) Pte Ltd
- 2 Blocks, 22 modules + 26 modules per floor
- Total **1,866** modules
- ► Weight of one module: ~18 to 29 tons
- Module type: Concrete module
- Precast yard : Malaysia
- Fitting Out yard: Singapore
- Status: MiC Installation Completed

Modular design for Bedroom Unit

PPVC WALL SYSTEM 200mm THK



EXTERNAL RC WALL - CAST IN SITU

PARTY WALLS: 75-100mm THK drywall/blockwall

- Largest Module size 8.35m x 3.1m x 3.15mH
- Smallest Module size 5.75m x 3.0m x 3.15mH
- Module weight between 18 Ton and 29 Ton
- Maximum Width of the module 3.1m
- ► Height of the module **3.15m**

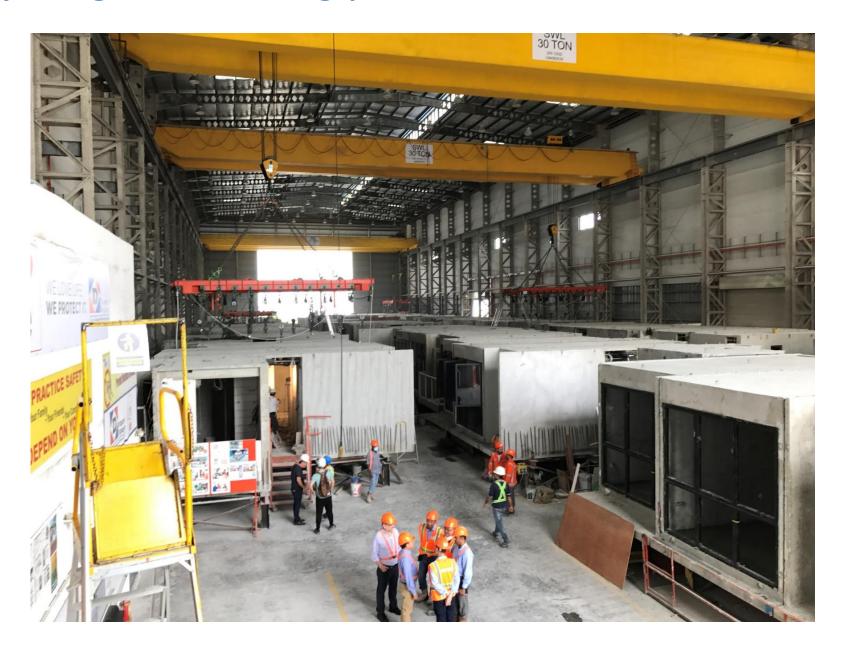
PPVC Construction

<u>Stage 1 – Carcass Fabrication – Malaysia</u>

<u>Stage 2 – Fit Out Installation – Singapore</u>

Stage 3 – Site Installation

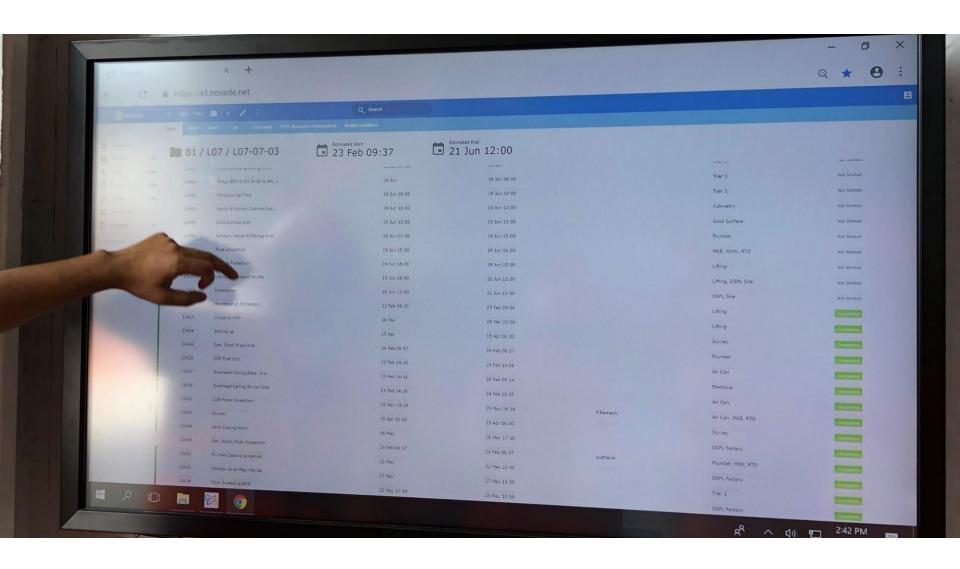
Preparation for Transfer Slab


Lifting process

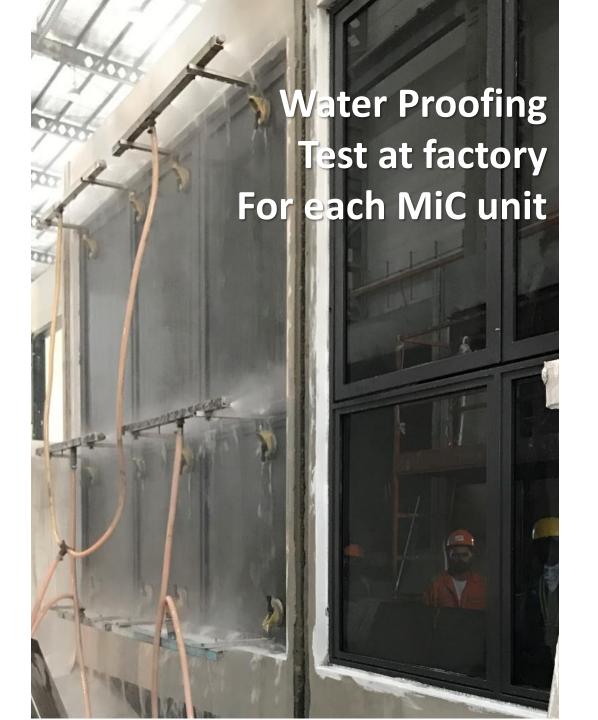
PPVC Module is installed

Precast Yard in Malaysia

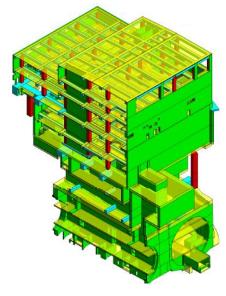
Dry Fitting-out Plant in Singapore

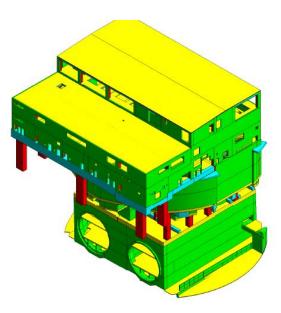

Dry Fitting-out Plant in Singapore

Full Digitalization for work trade management

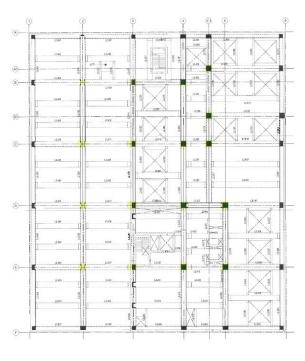

Dry Fitting-out Plant in Singapore

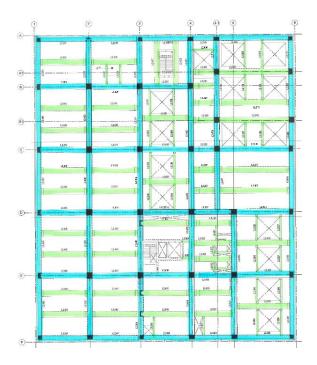
Full Digitalization for work trade management

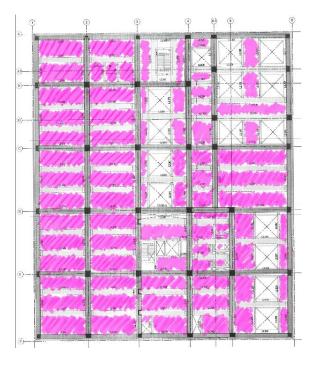

Concrete MiC Lifting on site



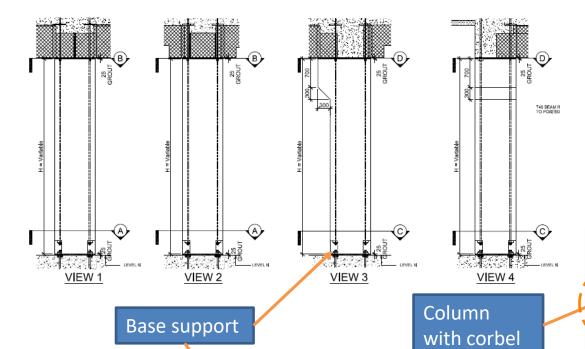
DfMA Solution for Ventilation Building in TMCLK project




DfMA Structural Component

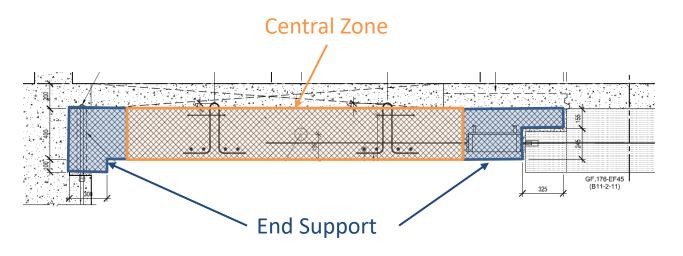

1) Columns

2) Beams



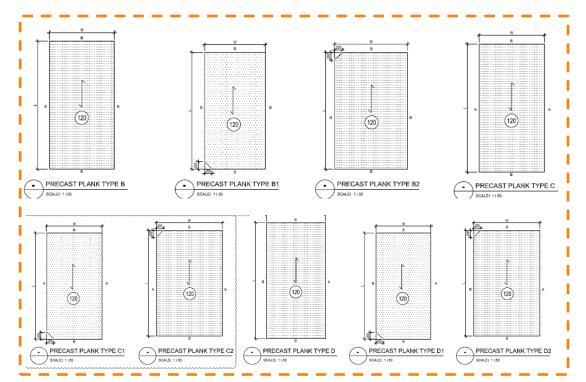
3) Slabs

DfMA Precast Column

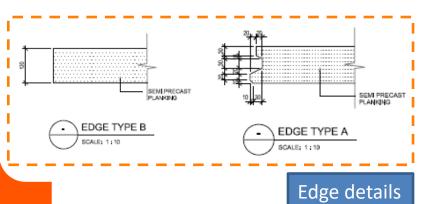


- 2 types of moulds
- 2 columns fabricated per day

DfMA Precast Beams



- ▶ 11 types of Central Zone in term of geometry
- Each types of Central Zone connect wth2 to 6 possible End Support types
- ▶ 12 moulds used at the precast factory
- About 3 to 5 pieces fabricated per day

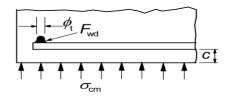


DfMA Precast Slab

- 9 types of slabs
- 2 types of edge
- > 7 moulds
- > 7 slabs fabricated per day

Fabrication Yard

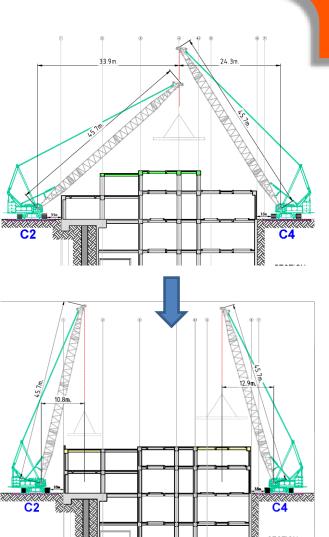
Minimize of Temporary works


- Temporary prop for column not required, ensure column shoe bolt and nut tightened
- Mid prop required for long span beam to support stitching concrete
- End prop for starter bar end details for beam
- ▶ Wall corbels for supporting precast slab, no extra prop required in general.

Simple bearing details between elements

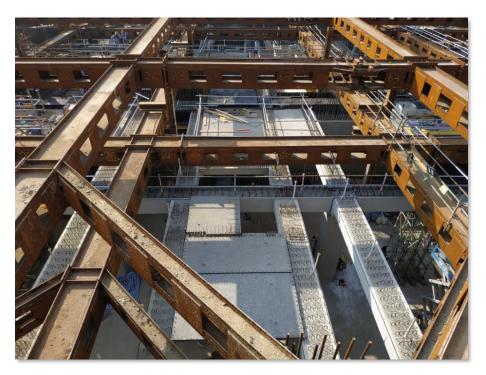
- No ties/fixing for slab on beam
- Bearing width in consideration of spalling and construction tolerance
- Anchorage length of rebar
 - Use of Welded transverse bar
 - Use of mechanical anchorages
 - Reduction of bearing width

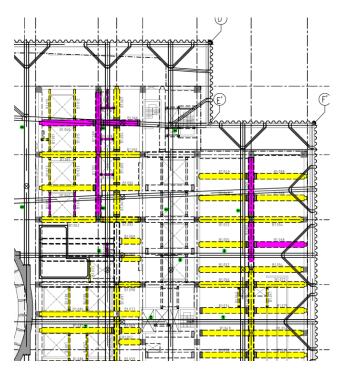
 Basic tension anchorage length, I_b, for any shape measured along the centreline



Lifting arrangement

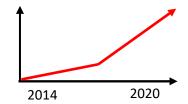
- Install elements from the centre to the external sides
- Use the luffing jib to reach the elements in the middle of the building without affecting the external walls





DfMA inside cofferdam

- To do a mix of precast and in-situ elements where direct lifting not possible
- Lift on base slab and then move to the correct location on the base slab and lift back up



MiC Transformation in Singapore

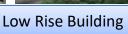
Since it started in 2014....

PPVC system has gone through some transformation

Quantum of projects increased tremendously

Method of PPVC has been changed

Height of PPVC construction has been increased



Similar Transformation in Hong Kong

In line with Government's initiative to push MiC

香港特別行政區政府 The Government of the Hong Kong Special Administrative Region

政府總部 發展局 工務科 香港添馬添美道2號 政府總部西翼18樓

Works Branch
Development Bureau
Government Secretariat
18/F, West Wing,
Central Government Offices,
2 Tim Mei Avenue, Tamar, Hong Kong

Ref. : DEVB(PSGO) 38/1

Group: 5

31 March 2020

<u>Development Bureau</u> Technical Circular (Works) No. 2/2020

Modular Integrated Construction (MiC)

Scope

This Circular sets out the policy on the adoption of Modular Integrated Construction (MiC) for new building works¹ with total construction floor area (CFA) larger than 300m² under the Capital Works Programme (CWP) to be tendered on or after 1 April 2020.

Effective Date

This Circular shall take immediate effect.

Effect on Existing Circulars and Circular Memoranda

This Circular has no effect on existing circulars.

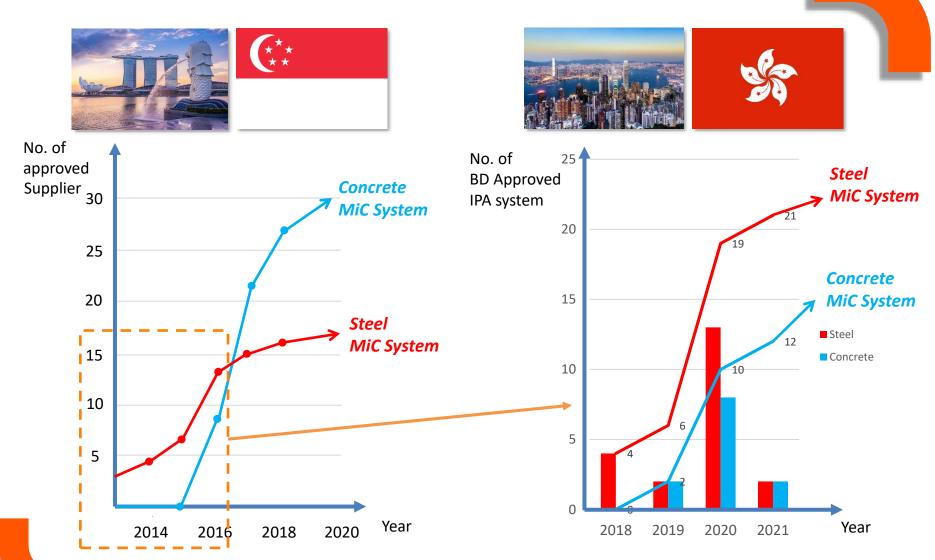
Background

4. MiC is a construction method whereby freestanding volumetric modules with finishes, fixtures, fittings, furniture and building services installation, etc. manufactured off-site and then transported to site for assembly.

DEVB TC(W) No. 2/2020

Page 1 of 4

	Building types	Accommodations		
		List 1*	List 2 **	
1. 2. 3.	Staff quarters Hostels Residential and Care Homes	Residential units Kitchens / pantries Lavatories	Corridors / communal areas Others, e.g. management offices / recreational facilities	
4.	Schools	Classrooms Pantries Lavatories	Principal / teachers' rooms, speciarooms, laboratories, libraries Corridors / communal areas Others, e.g. management offices	
5.	Office buildings	Office areas Pantries Lavatories	Corridors / communal areas Others, e.g. management offices / receptions / guard rooms / typical E&M rooms	
6.	Medical facilities	General wards Consultation rooms Treatment rooms Accommodation for medical staff, e.g. quarters and offices Education facilities, e.g. classrooms Pantries Lavatories	Special wards Operation theatres Accommodations of special equipment Corridors / communal areas Others, e.g. management offices	
7.	General		Staircases and lobbies of above buildings where practicable	
** A	ot adopted. ccommodations under Li	st 2 are encouraged to adopt Mi	dated. Exemption from SC is required if MiC is C whenever practicable. However, flexibility to idual project is allowed for project office / work	


- Acoustic
- Vibration
- Fire Protection
- Building Services
- Fitting Out
-

New Generation of MiC System

¹ Including building works funded under Heads 702 to 707, 709 and 711; and Capital Subvention Projects under Head 708 of the Capital Works Reserve Fund (CWRF).

Similar Transformation in Hong Kong

Increasing demand on Concrete MiC

Challenge facing in Hong Kong – Concrete MiC connection

- Wet-joint connection is required for providing adequate integrity
- Comprehensive consideration is required for adopting suitable connection method

Singapore

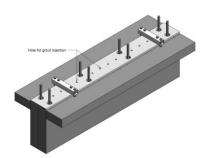
33 m /s → 0.65kPa

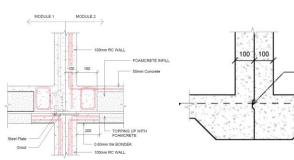
(c) Wind loads	(i) Code of basic data for the design of buildings. Loading. Wind loads – CP 3 Chapter V Part 2, using 33 m/s as the basic wind speed 3 second gust speed); and (ii) Loading for buildings. Code of practice for wind loads – BS 6399: Part 2, using 22 m/s as the basic wind speed (hourly mean speed).
----------------	---

Table 3-1 Wind reference pressure, $Q_{o,z}$

Hong Kong General > 2.0 kPa

Effective height Z_e (m)	Wind reference pressure $Q_{o,z}$ (kPa)
≤ 2.5	1.59
5	1.77
10	1.98
20	2.21
30	2.36
50	2.56


Vertical rebar connection


By grout coupler / grout hole joint / concrete stitch joint

High Wind Load in Hong Kong

Joint for External Façade

Lateral stability

By in-situ diaphragm slab / rebar lapping in slot / Steel connection plate / composite wall connection

Key to success – Suitable Connection detail

Challenge facing in Hong Kong – MiC vs DfMA?

MiC

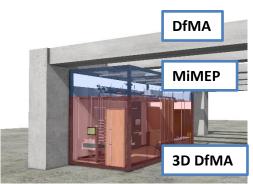
Synergy

MiMEP

DfMA

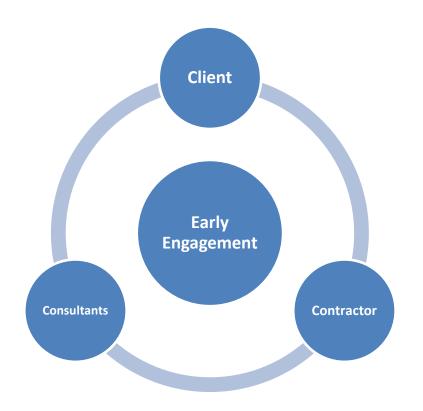
Myth: Are they separate topics?

Challenge facing in Hong Kong – MiC vs DfMA?


	Structural system	MEP system	Fitting out
Type 1		MiC method (All in one)	
Type 2	Cast in-situ	3D DfMA method	
Type 3	Cast in-situ	Site-install	3D DfMA
Type 4	DfMA method	MiMEP method	3D DfMA

- No Single solution can suit all kinds of project situation
- Adequate design experience is required to choose a suitable DfMA/MiMEP/MiC scheme to cater:
 - ✓ Performance requirement
 - ✓ Dimensional constraint
 - ✓ Transportation constraint
 - ✓ Installation constraint

Example of Type 2


Example of Type 4

Key to success

Strong Design Team to choose suitable MiC/DfMA combination

Challenge facing in Hong Kong – Design Process

Processing of Plan Submissions

Integrated turnkey solution

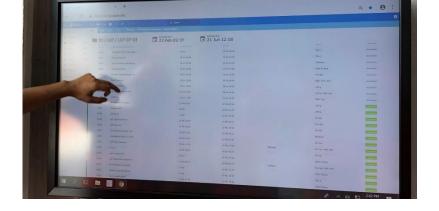
An advance MiC module require high design coordination and integration between the various trades and expertise

Earlier Approval Process on Design and Material

- MiC design process shall take place as earliest
 as possible to take full advantage in programme
- Design and material approval is in critical path.

Early Engagement between different discipline

Challenge facing in Hong Kong – Digitalization



Digitalized Quality Control System

Full BIM design implementation

